Как установить ротор на ветряк в майнкрафт


Кинетический ветрогенератор - | Grand-Mine

Кинетический ветрогенератор вырабатывает кинетическую энергию зависимое от скорости ветра, а кинетический генератор "переделывает" кинетическую энергию в простую в пропорции 8:1 (я, иногда, устанавливаю вместо кинетического генератора токарный стол)

Скорость ветра зависит от высоты, погоды и случайного фактора, меняющегося во времени. Дождь увеличивает скорость на 20%, гроза на 50%.*

1. Чтобы установить Кинетический ветрогенератор вам нужен: сам ветрогенератор и кинетический генератор
а крафтятся они так:
1) Кинетический генератор


(Генератор, 6 железных оболочек, электромотор и железный стержень)

2)Кинетический ветрогенератор:


(Основной корпус механизма, 4 железных стержня, 4 железные пластины=48 железа)

2. Нужно энергохранилеще

3. Проводим провода от (МФЭХ) до 160 блока (так-как это самая оптимальная высота. На ВСЕХ остальных блоках хоть выше, хоть ниже скорость ветра будет ниже чем на 160 блоках)

4. Ставим Кинетический генератор

ВАЖНО
Нужно чтобы был в кинетическом генераторе на текстурках (типо диска)
Главное чтобы не вот так

Это получается при зажатом шифте когда вы нажимаете правой кнопкой мыши по кинетическому генератору
Убрать это можно при не зажатом шифте правой кнопкой мыши

5.Ставим кинетический ветрогенератор
Зажимаем шифт и тыкаем правой кнопкой мыши

и тоже важно как и с кинетическим генератором с зажатым шифтом с ключом


Убрать также без зажатого шифта нажать правой кнопкой мыши ключиком
5. ставим ротор так-как это 160 блок, я выбрал углеволоконный ротор

Углеволоконные роторы можно ставить в 11 блоков в сторону низ\верх\лева\справа.

и вот что у меня получилось

если вы хотите поставить также в 2 слоя то от них должно быть расстояние 35 блоков.
У меня всё.
Удачи и приятной игры =)

* - Информация взятая с WIKI

Как работают ветряные турбины?

Возможно, вы видели их, проезжая по сельской местности. Или, может быть, вы видели их недалеко от берега, вырисовывающихся на горизонте со своими вращающимися лезвиями. Опять же, вы могли видеть их на чьей-то крыше или в рамках небольшой городской операции. Независимо от местоположения, ветряные турбины и энергия ветра становятся все более распространенным явлением в современном мире.

Во многом это связано с угрозой изменения климата, загрязнением воздуха и желанием избавить человечество от зависимости от ископаемого топлива.Что касается альтернативных и возобновляемых источников энергии, ожидается, что ветровая энергия в будущем займет вторую по величине долю рынка (после солнечной). Но как именно работают ветряные турбины?

Описание:

Воздушные турбины - это устройства, которые превращают кинетическую энергию ветра и изменений воздушного потока в электрическую энергию. В общем, они состоят из следующих компонентов: ротор, генератор, и структурный компонент поддержки (который может принимать форму либо башен, механизма ротора поворота вокруг вертикальной оси, или оба).

.

Как работают ветряные турбины?

Вы здесь

Ветровые турбины работают по простому принципу: вместо того, чтобы использовать электричество для производства ветра, как вентилятор, ветровые турбины используют ветер для производства электроэнергии.Ветер вращает похожие на пропеллер лопасти турбины вокруг ротора, который вращает генератор, который вырабатывает электричество.

Ветер - это форма солнечной энергии, вызванная сочетанием трех одновременных событий:

  1. Солнце неравномерно нагревает атмосферу
  2. Неровности земной поверхности
  3. Вращение Земли.

Характер и скорость ветровых потоков сильно различаются по территории Соединенных Штатов и изменяются в зависимости от водоемов, растительности и различий в рельефе местности. Люди используют этот поток ветра или энергию движения для многих целей: для плавания, запуска воздушного змея и даже для выработки электроэнергии.

Термины «энергия ветра» и «энергия ветра» описывают процесс, с помощью которого ветер используется для выработки механической энергии или электричества. Эту механическую мощность можно использовать для конкретных задач (например, измельчения зерна или перекачивания воды), или генератор может преобразовывать эту механическую мощность в электричество.

Ветряная турбина превращает энергию ветра в электричество, используя аэродинамическую силу от лопастей ротора, которые работают как крыло самолета или лопасти винта вертолета. Когда ветер проходит через лезвие, давление воздуха с одной стороны лезвия уменьшается. Разница в давлении воздуха на двух сторонах лопасти создает подъемную силу и сопротивление. Сила подъема сильнее сопротивления, и это заставляет ротор вращаться. Ротор подключается к генератору либо напрямую (если это турбина с прямым приводом), либо через вал и ряд шестерен (редуктор), которые ускоряют вращение и позволяют использовать генератор меньшего размера.Этот перевод аэродинамической силы во вращение генератора создает электричество.

Типы ветряных турбин

Большинство ветряных турбин делятся на два основных типа:

Деннис Шредер | NREL 25897

Ветровые турбины с горизонтальной осью - это то, что многие люди представляют, когда думают о ветряных турбинах.

Чаще всего они имеют три лопасти и работают «против ветра», при этом турбина поворачивается наверху башни, так что лопасти обращены против ветра.

Ветровые турбины с вертикальной осью бывают нескольких разновидностей, включая модель Дарье в стиле взбивания яиц, названную в честь ее французского изобретателя.

Эти турбины являются всенаправленными, что означает, что для работы их не нужно настраивать так, чтобы они были направлены против ветра.

Ветряные турбины можно строить на суше или на море в больших водоемах, таких как океаны и озера. Министерство энергетики США в настоящее время финансирует проекты по развитию морских ветроэнергетических установок в США.С. вод.

Области применения ветряных турбин

Современные ветряные турбины можно разделить на категории по месту их установки и способу подключения к сети:

Наземные ветряные турбины имеют размеры от 100 киловатт до нескольких мегаватт.

Более крупные ветряные турбины более рентабельны и объединены в ветряные электростанции, которые обеспечивают большую мощность для электросети.

Деннис Шредер | NREL 40484

Морские ветряные турбины обычно массивные и выше Статуи Свободы.

У них нет таких же проблем с транспортировкой, как у наземных ветряных установок, поскольку крупные компоненты можно перевозить на кораблях, а не по дорогам.

Эти турбины способны улавливать мощные океанские ветры и генерировать огромное количество энергии.

Когда ветряные турбины любого размера устанавливаются со стороны «потребителя» электросчетчика или устанавливаются в месте или рядом с местом, где будет использоваться производимая ими энергия, их называют «распределенным ветром».

Многие турбины, используемые в распределенных приложениях, представляют собой небольшие ветряные турбины. Одиночные небольшие ветряные турбины мощностью менее 100 киловатт обычно используются в жилых, сельскохозяйственных и небольших коммерческих и промышленных целях.

Небольшие турбины могут использоваться в гибридных энергетических системах с другими распределенными энергоресурсами, такими как микросети с питанием от дизельных генераторов, батарей и фотоэлектрических элементов.

Эти системы называются гибридными ветровыми системами и обычно используются в удаленных автономных местах (где подключение к коммунальной сети недоступно) и становятся все более распространенными в приложениях, подключенных к сети, для обеспечения отказоустойчивости.

Узнайте больше о распределенном ветре из Distributed Wind Animation или прочтите о том, что делает Управление технологий ветровой энергии для поддержки развертывания распределенных ветровых систем для домов, предприятий, ферм и местных ветровых проектов.

В этом видео освещаются основные принципы работы ветряных турбин и показано, как работают различные компоненты для улавливания и преобразования энергии ветра в электричество.См. Текстовую версию. История ветроэнергетики США

На протяжении истории использование энергии ветра увеличивалось и уменьшалось, от использования ветряных мельниц в прошлые века до высокотехнологичных ветряных турбин на ветряных фермах и т. Д ...

Выучить больше

Узнайте больше о ветровой энергии, посетив веб-страницу офиса Wind Energy Technologies Office или просмотрев информацию о финансируемых офисом мероприятиях.

Подпишитесь на информационный бюллетень WETO

Будьте в курсе последних новостей, событий и обновлений ветроэнергетики.

.

частей ветряной турбины - части ветряной турбины

История ветроэнергетики

Еще в 3000 году до нашей эры люди использовали энергию ветра для впервые в виде парусных лодок в Египте. Паруса захватили энергия ветра, чтобы переправить лодку по воде. Самые ранние ветряные мельницы, использовались для измельчения зерна, возникли в 2000 г. до н. э. в древнем Вавилоне или 200 г. до н. э. в древней Персии, смотря кого спросить. Эти ранние устройства состояли из одной или нескольких вертикально установленных деревянных балок, на внизу был точильный камень, прикрепленный к вращающемуся валу, повернулся с ветром.Концепция использования энергии ветра для измельчения зерно быстро распространилось по Ближнему Востоку и долгое время широко использовалось до того, как в Европе появилась первая ветряная мельница. Начиная с 11-го века нашей эры европейские крестоносцы принесли с собой эту концепцию, и родилась мельница голландского типа, знакомая большинству из нас.

Современное развитие ветроэнергетических технологий и приложений шло хорошо к 1930-м годам, когда около 600 000 ветряных мельниц поставили сельская местность с электричеством и водоснабжением.однажды широкое распространение электроэнергии на фермы и сельские города, использование энергии ветра в Соединенных Штатах начало сокращаться, но возобновился после нехватки нефти в США в начале 1970-х годов. Над последние 30 лет исследования и разработки колебались в зависимости от федеральных государственные проценты и налоговые льготы. В середине 80-х ветряные турбины имел типичную максимальную мощность 150 кВт. В 2006 г. турбины для коммунальных предприятий обычно имеют номинальную мощность более 1 МВт и доступны мощностью до 4 МВт.

Самая простая ветроэнергетическая турбина состоит из трех важнейших частей:

  • Лопасти ротора - Лопасти в основном являются парусами системы; в своей простейшей форме они действуют как барьеры для ветра (более современные конструкции лезвий выходят за рамки барьерного метода). Когда ветер заставляет лопасти двигаться, он передает часть своей энергии ротору.
  • Вал - Вал ветряной турбины соединен с центром ротора.Когда ротор вращается, вращается и вал. Таким образом, ротор передает свою механическую энергию вращения валу, который поступает в электрический генератор на другом конце.
  • Генератор - По сути, генератор представляет собой довольно простое устройство. Он использует свойства электромагнитной индукции для создания электрического напряжения - разницы в электрическом заряде. Напряжение - это, по сути, электрическое давление - это сила, перемещающая электричество или электрический ток из одной точки в другую.Таким образом, генерирующее напряжение фактически генерирует ток. Простой генератор состоит из магнитов и проводника. Проводник обычно представляет собой спиральную проволоку. Внутри генератора вал соединяется со сборкой постоянных магнитов, которые окружают катушку с проводом. При электромагнитной индукции, если у вас есть проводник, окруженный магнитами, и одна из этих частей вращается относительно другой, это индуцирует напряжение в проводнике. Когда ротор вращает вал, вал вращает сборку магнитов, создавая напряжение в катушке с проволокой.Это напряжение пропускает электрический ток (обычно переменный ток или мощность переменного тока) через линии электропередач для распределения. (См. «Как работают электромагниты», чтобы узнать больше об электромагнитной индукции, и «Как работают гидроэлектростанции», чтобы узнать больше о турбогенераторах.)

Теперь, когда мы рассмотрели упрощенную систему, мы перейдем к современным технологиям, которые сегодня используются в ветряных электростанциях и сельских дворах. Это немного сложнее, но основные принципы те же.

Объявление

.

ВОПРОСЫ КОНСТРУКЦИИ РОТОРА ВЕТРОВОЙ ТУРБИНЫ | Оценка потребностей в исследованиях в области технологии материалов для ротора ветряных турбин

СПРАВОЧНИКИ И БИБЛИОГРАФИЯ

Бертельсен, В. Д. и М. Д. Зутек, 1989. Исследование возникновения и распространения усталостного разрушения в древесине / эпоксидном ламинате, пригодном для ветряных турбин, содержащем несколько стилей соединения шпона. Сентябрь. DOE / SBIR, контракт DEAC02-86ER80385, отчет по фазе 2, Gougeon Brothers, Inc.

Баррелл П., Т. МакКейб и Р. де ла Роса, Р. 1986. Оценка различных типов полиэфиров при циклических испытаниях и математическая модель для расчета выносливости при изгибе. Представлено на Международной конференции по применению композитных материалов в морской среде, 24-26 марта, стр. D-1, D-5.


Фаддул, Дж. Р. 1981. Тестовая оценка концепции лопасти ветряной турбины из ламинированного дерева. Отчет Министерства энергетики DOE / NASA / 20230-30, NASA TM-81719. Министерство энергетики США, Вашингтон, округ Колумбия


Gougeon Brothers, Inc. 1985. Инженерные ламинаты, Технический бюллетень № 1, Бэй-Сити, Мичиган, апрель.


Майли, С. Дж. 1982. Каталог данных о профиле с низким числом Рейнольдса для применения в ветряных турбинах. Подготовлено Департаментом аэрокосмической техники Техасского университета A&M для Rockwell International Corporation, Energy Systems Group по субподряду № PFY12781-W.

Musial, W. D., C. P. Butterfield, D. Handman. 1985. Программа испытаний ESI-80 / EPRI.


Пур, Р. З. и М. Паттерсон. 1990. Состояние и опыт эксплуатации 7,5-метрового лезвия. Представлено на конференции Американской ассоциации ветроэнергетики 27 сентября.


Стоддард, Ф. С. 1989. Полевые проблемы с роторами ветряных турбин. Презентация НАН перед Комитетом по оценке потребностей в исследованиях в области технологии материалов для ротора ветряных турбин, 7-8 ноября, Вашингтон, округ Колумбия,

Стоддард, Ф.С. и М.Д. Зутек. 1987. Усталость, связанная с удержанием лезвия: симптомы, причины, лечение.Представлено на семинаре Windpower 87, 5 октября.

Stroebel, T., C. Dechow и M. D. Zuteck. 1984. Разработка усовершенствованного ротора из композитного дерева и разработка технологии лезвий из древесного композитного материала. Отчет Министерства энергетики США DOE / NASA / 0260-1, NASA CR-174713. Министерство энергетики США. Вашингтон, округ Колумбия,


Танглер, Дж. 1990. Разработка усовершенствованных аэродинамических поверхностей / лопастей в SERI. Презентация НАН, 22-23 января, Вашингтон, округ Колумбия,

.

Смотрите также