На чем работает электродвигатель в майнкрафт


Forestry/Электрический двигатель — Playzone Minecraft Wiki

Электрический двигатель работает за счёт электричества из мода Industrial Craft2. Для включения он должен быть активирован сигналом красного камня, как и любой двигатель Build Craft. Электрический двигатель не может взорваться от перегрева.

Максимум он потребляет 6 еЭ/такт, а его выходная мощность составляет 2 МДж/такт. Имеет встроенный аккумулятор, который можно заряжать, используя электричество, подаваемое по проводам (принимает любое входное напряжение, заряжает аккумулятор до 12 еЭ), а можно заряжать вручную, положив внутрь заряженный аккумулятор или энергокристалл (красный).

Двигатель перегревается, если вся вырабатываемая энергия не будет успевать потребляться. По достижении критической температуры двигатель остановится, пока полностью не остынет.

Если запитать двигатель напряжением меньше его максимального потребления, то он просто будет работать с меньшей мощностью и медленнее. Следует знать, что он всегда потребляет только указанные 6 единиц энергии, даже если к нему подводить напряжение, повышаемое трансформатором. В некоторых версиях он не имеет интерфейса, из-за чего его параметры нельзя улучшить.

Крафт

Интерфейс

Файл:Интерфейс Электрический двигатель (Forestry).png
В нижний слот можно положить заряженные аккумулятор или энергокристалл (красный).
Левый слот для установки улучшений — печатных плат с припаянными электронными лампами.

Улучшения

Электронные лампы Эффект у печатной платы
Оловянные электронные лампы Добавочное напряжение I (2*)
Повышает выходную мощность на 2 МДж/т.
Повышает потребляемую мощность на 7 еЭ/т.
Медные электронные лампы Пониженное напряжение (1*)
Понижает выходную мощность на 1 МДж/т.
Понижает потребляемую мощность на 2 еЭ/т.
Бронзовые электронные лампы Добавочное напряжение II (2*)
Повышает выходную мощность на 4 МДж/т.
Повышает потребляемую мощность на 15 еЭ/т.
Железные электронные лампы Электроэффективность (1*)
Понижает потребляемую мощность на 1 еЭ/т.

*В скобках названий эффектов указано, сколько раз можно использовать лампу на печатной плате.

Взаимодействие с трубами

Отсутствует

Как работают электродвигатели?

Криса Вудфорда. Последнее изменение: 25 июля 2020 г.

Щелкните выключателем и мгновенно получите власть - как бы любили наши предки электродвигатели! Вы можете найти их во всем, начиная с электропоезда с дистанционным управлением автомобили - и вы можете быть удивлены, насколько они распространены. Сколько электрических моторы сейчас есть в комнате с тобой? Наверное, два в вашем компьютере для начала ездить, а еще один питает охлаждающий вентилятор.Если вы сидите в спальне, вы найдете моторы в фенах и многих игрушки; в ванной - вытяжки и электробритвы; На кухне моторы есть практически во всех устройствах, от стиральных и посудомоечных машин до кофемолок, микроволновых печей и электрических консервных ножей. Электродвигатели зарекомендовали себя одними из лучших изобретения всех времен. Давайте разберемся и узнаем, как они работай!

Фото: Даже маленькие электродвигатели на удивление тяжелые.Это потому, что они набиты туго намотанной медью и тяжелыми магнитами. Это мотор от старой электрической газонокосилки. Вещь медного цвета в сторону В передней части оси с прорезями находится коммутатор, удерживающий двигатель вращение в том же направлении (как описано ниже).

Как электромагнетизм заставляет двигатель двигаться?

Основная идея электродвигателя очень проста: вы помещаете в него электричество с одного конца, а ось (металлический стержень) вращается на другом конце, давая вам возможность управлять машина какая то.Как это работает на практике? Как именно ваш преобразовать электричество в движение? Чтобы найти ответ на этот вопрос, у нас есть вернуться во времени почти на 200 лет.

Предположим, вы берете кусок обычного провода, превращаете его в большую петлю, и положите его между полюсами мощной постоянной подковы магнит. Теперь, если вы подключите два конца провода к батарее, провод прыгнет кратко. Удивительно, когда видишь это впервые. Это прямо как по волшебству! Но есть совершенно научный объяснение.Когда электрический ток начинает течь по проводу, он создает магнитное поле вокруг него. Если разместить провод возле постоянного магнит, это временное магнитное поле взаимодействует с постоянным поле магнита. Вы знаете, что два магнита расположены рядом друг с другом либо притягивать, либо отталкивать. Таким же образом временный магнетизм вокруг провода притягивает или отталкивает постоянный магнетизм от магнит, и именно это заставляет провод подпрыгивать.

Правило левой руки Флеминга

Вы можете определить направление, в котором будет прыгать провод, используя удобная мнемоника (вспомогательная память), называемая правилом левой руки Флеминга (иногда называется Motor Rule).

Вытяните большой, указательный и второй пальцы левой руки. рука так, чтобы все три были под прямым углом. Если вы укажете вторым пальцем в направлении Течения (который течет от положительного к отрицательная клемма АКБ), а Первая палец в направление поля (которое течет с севера на южный полюс магнит), ваш thuMb будет покажите направление, в котором провод Ходы.

Это ...

  • Первый палец = Поле
  • SeCond палец = Текущий
  • ЧтМб = Движение

Несколько слов о текущем

Если вас смущает то, что я говорю, что ток течет с положительного на отрицательный, это просто историческое соглашение.Такие люди, как Бенджамин Франклин, помогавшие разобраться тайна электричества еще в 18 веке, считали, что это поток положительных зарядов, так что она перетекала с положительного на отрицательный. Мы называем эту идею условным током. и до сих пор используют его в таких вещах, как правило левой руки Флеминга. Теперь у нас есть лучшие идеи о том, как электричество работает, мы склонны говорить о токе как о потоке электронов от отрицательного к положительному в направлении , противоположном направлению обычного тока.Когда вы пытаетесь вычислить вращение двигателя или генератора, обязательно помните, что ток означает обычный ток , а не поток электронов.

Как работает электродвигатель - теоретически

Фото: Электрик ремонтирует электродвигатель. на борту авианосца. Блестящий металл, который он использует, может выглядеть как золото, но на самом деле это медь, хороший проводник, который намного дешевле. Фото Джейсона Якобовица любезно предоставлено ВМС США.

Связь между электричеством, магнетизмом и движением изначально была открыл в 1820 году французский физик Андре-Мари Ампер (1775–1867), и это фундаментальная наука об электродвигателе. Но если мы хотим превратить это удивительное научное открытие в более практическое Немного технологий для питания наших электрических косилок и зубных щеток, мы должны пойти немного дальше. Изобретателями, которые сделали это, были англичане Майкл Фарадей (1791–1867). и Уильям Стерджен (1783–1850) и американец Джозеф Генри (1797–1878).Вот как они пришли к своему гениальному изобретению.

Предположим, мы сгибаем нашу проволоку в квадратную U-образную петлю, так что фактически два параллельных провода, проходящие через магнитное поле. Один из них отводит электрический ток от нас через провод, а другой один возвращает ток обратно. Потому что ток течет в Правило левой руки Флеминга говорит нам два провода будут двигаться в противоположных направлениях. Другими словами, когда мы включите электричество, один из проводов двинется вверх и другой будет двигаться вниз.

Если бы катушка с проволокой могла продолжать двигаться вот так, она бы вращалась непрерывно - и мы будем на пути к созданию электрического двигатель. Но этого не может произойти с нашей нынешней настройкой: провода будут быстро запутаться. Не только это, но если бы катушка могла вращаться далеко достаточно, что-нибудь еще случится. Как только катушка достигла вертикали положение, он перевернется, и электрический ток будет течь через него в противоположном направлении. Теперь силы на каждого сторона катушки перевернется.Вместо непрерывного вращения в в том же направлении, он пойдет обратно в том же направлении, в котором только что пришел! Представьте себе электропоезд с таким двигателем: он будет держать шаркая назад и вперед на месте, даже не везде.

Как работает электродвигатель на практике

Есть два способа решить эту проблему. Один из них - использовать своего рода электрический ток, который периодически меняет направление, что известно как переменный ток (AC). В виде небольшого батарейного двигатели, которые мы используем дома, лучшее решение - добавить компонент называется коммутатором концы катушки.(Не беспокойтесь о бессмысленных технических имя: это немного старомодное слово «коммутация» немного похоже на слово «добираться до работы». Это просто означает переходить туда и обратно в одном и том же путь, который коммутируют, означает путешествовать туда и обратно.) В своей простейшей форме Коммутатор представляет собой металлическое кольцо, разделенное на две отдельные половины и его задача - реверсировать электрический ток в катушке каждый раз, когда катушка вращается на пол-оборота. Один конец катушки прикреплен к каждая половина коммутатора. Электрический ток от аккумулятора подключается к электрическим клеммам двигателя.Они подают электроэнергию в коммутатор через пару свободных разъемы, называемые щетками, сделали либо из кусочков графита (мягкий уголь, похожий на карандаш "свинец") или тонкие отрезки упругого металла, который (как название предполагает) "заделать" коммутатор. С коммутатор на месте, когда электричество течет по цепи, катушка будет постоянно вращаться в одном и том же направлении.

Работа: упрощенная схема деталей в электрическом двигатель.Анимация: как это работает на практике. Обратите внимание, как коммутатор меняет направление тока каждый раз, когда катушка поворачивается. наполовину. Это означает, что сила на каждой стороне катушки всегда толкая в том же направлении, что позволяет катушке вращаться по часовой стрелке.

Такой простой экспериментальный двигатель, как этот, не может большая мощность. Мы можем увеличить усилие поворота (или крутящий момент) что мотор может творить тремя способами: либо у нас может быть больше мощный постоянный магнит, или мы можем увеличить электрический ток протекает через провод, или мы можем сделать катушку так, чтобы в ней было много «витки» (петли) очень тонкой проволоки вместо одного «витка» толстой проволоки.На практике двигатель также имеет постоянный магнит, изогнутый в круглой формы, так что он почти касается катушки с проволокой, которая вращается внутри него. Чем ближе друг к другу магнит и катушка, тем большее усилие, которое может создать двигатель.

Несмотря на то, что мы описали ряд различных частей, вы можете представить двигатель как имеющий всего два основных компонента:

  • По краю корпуса двигателя находится постоянный магнит (или магниты), который остается статичным, поэтому его называют статором двигателя.
  • Внутри статора находится катушка, установленная на оси, которая вращается с высокой скоростью, и это называется ротором. Ротор также включает в себя коммутатор.

Универсальные двигатели

Такие двигатели постоянного тока

отлично подходят для игрушек с батарейным питанием (таких как модели поездов, радиоуправляемые автомобили или электробритвы), но вы не найдете их во многих бытовых приборах. Мелкие бытовые приборы (например, кофемолки или электрические блендеры), как правило, используют так называемые универсальные двигатели , которые могут работать от переменного или постоянного тока.В отличие от простого двигателя постоянного тока, универсальный двигатель имеет электромагнит вместо постоянного магнита, и он получает питание от источника постоянного или переменного тока, который вы питаете:

  • Когда вы питаетесь постоянным током, электромагнит работает как обычный постоянный магнит и создает магнитное поле, которое всегда направлено в одном направлении. Коммутатор меняет направление тока катушки каждый раз, когда катушка переворачивается, как и в простом двигателе постоянного тока, поэтому катушка всегда вращается в одном направлении.
  • Однако, когда вы подаете переменный ток, ток, протекающий через электромагнит, и ток, протекающий через катушку , оба, , меняют направление, точно в шаге, поэтому сила на катушке всегда в одном направлении, а двигатель всегда вращается по часовой стрелке или против часовой стрелки.А как насчет коммутатора? Частота тока изменяется намного быстрее, чем вращается двигатель, и, поскольку поле и ток всегда синхронизированы, на самом деле не имеет значения, в каком положении находится коммутатор в любой данный момент.

Анимация: Как работает универсальный двигатель: Электроснабжение питает как магнитное поле, так и вращающуюся катушку. С источником постоянного тока универсальный двигатель работает так же, как и обычный двигатель постоянного тока, как указано выше. При питании от сети переменного тока и магнитное поле, и ток в катушке меняют направление каждый раз, когда изменяется ток питания.Это означает, что сила на катушке всегда направлена ​​в одну сторону.

Фото: Типичный универсальный двигатель: основные части двигателя среднего размера от кофемолки, которая может работать как от постоянного, так и от переменного тока. Серый электромагнит по краю - это статор (статическая часть), и он питается от катушек оранжевого цвета. Обратите внимание на прорези в коллекторе и прижимающиеся к нему угольные щетки, которые обеспечивают питание ротора (вращающейся части). Асинхронные двигатели в таких вещах, как электрические железнодорожные поезда, во много раз больше и мощнее, чем эти, и всегда работают с использованием переменного тока высокого напряжения (AC) вместо постоянного тока низкого напряжения (DC) или переменного тока умеренно низкого напряжения. который приводит в действие универсальные двигатели.

Электродвигатели прочие

В простых двигателях постоянного тока и универсальных двигателях ротор вращается внутри статора. Ротор представляет собой катушку, подключенную к источнику электроэнергии, а статор - это постоянный магнит или электромагнит. Большие двигатели переменного тока (используемые в таких вещах, как заводские машины) работают немного иначе: они пропускают переменный ток через противоположные пары магнитов, чтобы создать вращающееся магнитное поле, которое «индуцирует» (создает) магнитное поле в роторе двигателя, вызывая это вращаться.Подробнее об этом вы можете прочитать в нашей статье об асинхронных двигателях переменного тока. Если вы возьмете один из этих асинхронных двигателей и «развернете» его так, чтобы статор фактически превратился в длинную непрерывную дорожку, ротор мог катиться по нему по прямой. Эта гениальная конструкция известна как линейный двигатель, и вы найдете ее в таких вещах, как заводские станки и плавучие железные дороги «маглев» (магнитная левитация).

Еще одна интересная конструкция - бесщеточный двигатель постоянного тока (BLDC). Статор и ротор эффективно меняются местами, при этом несколько железных катушек статичны в центре и постоянный магнит вращается вокруг них, а коммутатор и щетки заменены электронной схемой.Вы можете прочитать больше в нашей основной статье о мотор-редукторах. Шаговые двигатели, которые вращаются на точно контролируемые углы, представляют собой разновидность бесщеточных двигателей постоянного тока.

,

Как работает электродвигатель?

Все признают, что если вы можете сделать очень эффективные электродвигатели, вы можете сделать качественный скачок вперед. - Джеймс Дайсон

Введение

«Электродвигатель стал немного более известным и ценимым за последние несколько лет благодаря тому, что он все больше интегрируется в наши автомобили. Поскольку большинство людей понимают и ценят влияние, которое их загрязнение оказывает на климат, спрос на автомобили возрос. производителей для создания автомобилей, которые могут помочь улучшить нашу окружающую среду или, по крайней мере, причинить меньше вреда."

«Именно благодаря этой потребности в росте и развитии некоторые из величайших изобретателей в мире усовершенствовали электродвигатель, чтобы теперь он работал лучше и эффективнее, чем когда-либо прежде».

Детали электродвигателя

Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей - статора и ротора. Используйте интерактивное изображение ниже в этом разделе, чтобы узнать больше о статоре и роторе и узнать о роли, которую каждый играет в электродвигателе.



статор ротор

Статор

Статор состоит из трех частей - сердечника статора, токопроводящей жилы и рамы. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и соединены друг с другом. У этих колец есть прорези на внутренней стороне колец, которые будет наматывать проводящий провод, образуя катушки статора.

Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов.Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3. Каждый тип проводов наматывается вокруг пазов на противоположных сторонах внутренней части сердечника статора.

После того, как токопроводящий провод вставлен в сердечник статора, сердечник помещается в раму.

Ротор

Ротор также состоит из трех частей - сердечника ротора, токопроводящих стержней и двух концевых колец. Пластины из высококачественной легированной стали образуют цилиндрический сердечник ротора, в центре которого проходит стержень.На внешней стороне сердечника ротора есть прорези, которые либо проходят параллельно стержнеобразной планке в центре сердечника ротора, либо слегка закручены для образования диагональных прорезей. Если сердечник статора имеет диагональные пазы на внешней стороне сердечника, он называется ротором с короткозамкнутым ротором.

Трехфазный четырехполюсный асинхронный двигатель использует ротор с короткозамкнутым ротором. По диагональным линиям в сердечнике размещены токопроводящие стержни, образующие обмотку ротора. Затем с обеих сторон сердечника помещают концевые кольца, чтобы закоротить все проводящие стержни, которые были размещены на диагональных линиях сердечника ротора.

После сборки ротора и статора ротор вставляется в статор, и с обеих сторон размещаются два концевых выступа. Эти концевые раструбы изготовлены из того же материала, что и рама статора, и используются для защиты двигателя с обеих сторон.


Как работает электродвигатель?

(непрофессионалам)

Если вы инженер-электрик, вы знаете, как работает электродвигатель. Если вы этого не сделаете, это может сильно сбить с толку, поэтому вот упрощенное объяснение (или версия «как работает электродвигатель для чайников») того, как четырехполюсный трехфазный асинхронный двигатель работает в автомобиле.

Он начинается с аккумуляторной батареи в автомобиле, которая подключена к двигателю. Электроэнергия поступает в статор через аккумулятор автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и действуют как магниты. Следовательно, когда электрическая энергия от автомобильного аккумулятора подается на двигатель, катушки создают вращающиеся магнитные поля, которые тянут проводящие стержни на внешней стороне ротора за ним. Вращающийся ротор создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.

Итак, в типичном автомобиле, который не является электрическим, есть и двигатель, и генератор переменного тока. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса. Вращение колес - это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка - аккумулятор необходимо подзарядить, чтобы он функционировал должным образом.

В электромобиле нет генератора.Итак, как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока. Это одна из причин уникальности электромобилей. Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе - ротор притягивается вращающимся магнитным полем, требуя большего крутящего момента. Но что происходит, когда вы отпускаете акселератор?

Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от магнитного поля).Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие заряжает аккумулятор, действуя как генератор переменного тока.

Чтобы еще больше упростить этот процесс, представьте, что крутите педали на велосипеде в гору. Чтобы добраться до вершины холма, вам нужно крутить педали сильнее и, возможно, даже придется встать и потратить больше энергии, чтобы повернуть шины и достичь вершины холма. Это похоже на нажатие на газ. Вращающееся магнитное поле, тянущее за собой ротор, создает сопротивление (или крутящий момент), необходимое для перемещения шин и автомобиля.Оказавшись на вершине холма, вы можете расслабиться и перезарядиться, а колеса будут двигаться еще быстрее, чтобы спуститься с холма. В автомобиле это происходит, когда вы отпускаете ногу с газа, а ротор движется быстрее и подает электроэнергию обратно в линию питания для подзарядки аккумулятора.


Что такое переменный ток (AC)
по сравнению с постоянным током (DC)?

Концептуальные различия этих двух типов токов кажутся довольно очевидными.Пока один ток постоянен, другой более прерывистый. Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.

Постоянный ток (DC)

Термин «постоянный ток» относится к электричеству, которое постоянно движется в единственном и последовательном направлении. Кроме того, напряжение постоянного тока поддерживает постоянную полярность, то есть неизменную.

Подумайте, как батареи имеют четко определенные положительные и отрицательные стороны.Они используют постоянный ток для постоянной подачи одинакового напряжения. В дополнение к батареям, топливные элементы и солнечные элементы также производят постоянный ток, в то время как простые действия, такие как трение определенных материалов друг о друга, также могут создавать постоянный ток.

В соответствии с нашей концепцией батарей, рассматривая положительную и отрицательную стороны батареи, важно отметить, что постоянный ток всегда течет в одном направлении между положительной и отрицательной стороной. Это гарантирует, что обе стороны батареи всегда будут положительными и отрицательными.



Переменный ток (AC)

Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые меняются во времени. При изменении напряжения и тока сигнала переменного тока они чаще всего следуют шаблону синусоидальной волны (на изображении выше синусоида показана на правом графике напряжения). Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью при просмотре во времени.Форма синусоидальной волны сигналов переменного тока обусловлена ​​способом генерации электричества.

Еще один термин, который вы можете услышать при обсуждении электроэнергии переменного тока, - это частота. Частота сигнала - это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц. Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.

Так почему это важно?

Электроэнергия переменного тока - лучший способ передачи полезной энергии от источника генерации (т.э., плотина или ветряк) на большие расстояния. Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, который подает питание в район (те цилиндрические серые прямоугольники, которые вы видите на полюсах линии электропередачи), может иметь напряжение до 66 кВА (66000 вольт переменного тока).

Мощность переменного тока

позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током энергии для приложений питания.


Как работает трехфазный четырехполюсный асинхронный двигатель?

Самые большие промышленные двигатели - это асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Но что именно означает «асинхронный» двигатель? С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора. С точки зрения непрофессионала, это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.

Что означает многофазность?

Всякий раз, когда у вас есть статор, в котором имеется несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью. Обычно многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы.

Многофазная система использует несколько напряжений для сдвига фаз отдельно от каждого из них, чтобы намеренно выйти из строя.

Что означает три фазы?

Основанный на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, выдвинутом в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля.Эта энергия заставляет катушки проводящего провода вести себя как электромагниты.

Простой способ понять три фазы - рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии. По мере создания энергии ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.


Лучшие электромобили

По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги.Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.

На данный момент мы все знаем, какой успех Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут. Однако есть десятки других компаний, которые добиваются значительного прогресса в этой области, например Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy's Spark и Mercedes B-Class Electric.


Электромобили и окружающая среда

Реальность такова, что цены на газ должны быть намного дороже, чем они есть, потому что мы не учитываем истинный ущерб окружающей среде и скрытые затраты на добычу нефти и ее транспортировку в США - Илон Маск

Электродвигатели прямо или косвенно воздействуют на окружающую среду на микро- и макроуровне. Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно.С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заселяют наши шоссе и города. Хотя это представляет собой новую проблему с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густо населенных в городах и пригородах, выбрасывающих токсины в воздух.


Примечание: MPG (значения миль на галлон, указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива в городе / шоссе для бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля.Рейтинги выбросов в области глобального потепления в регионах основаны на данных электростанций 2012 года в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение в 58 миль на галлон в США является средневзвешенным по продажам на основе того, где были проданы электромобили в 2014 году.

С большой точки зрения рост электромобилей дает несколько преимуществ. Во-первых, уменьшается шумовое загрязнение, так как шум, излучаемый электродвигателем, гораздо более приглушен, чем шум газового двигателя.Кроме того, в связи с тем, что электродвигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за меньшего количества автомобилей, нуждающихся в проверках.


Заключение

Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса. Хотя электрический двигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной индустрии, ориентированный не только на стиль и производительность, но и на внешнее воздействие.Таким образом, хотя электрический двигатель, возможно, не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс.

Если больше ничего не получится от достижений в области электродвигателей, то, по крайней мере, мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду. Это новое определение прогресса, определяемое электрическим двигателем.


Источники:

http: // www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Конструкция трехфазного асинхронного двигателя https://www.youtube.com/watch?v=Mle-ZvYi8HA
Как работает асинхронный двигатель работает? https://www.youtube.com/watch?v=LtJoJBUSe28
http://www.mpoweruk.com/motorsbrushless.htm
http://www.kerryr.net/pioneers/tesla.htm
https: // www.basilnetworks.com/article/motors/brushlessmotors.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
https: // www.youtube.com/watch?v=HWrNzUCjbkk
Принцип работы трехфазного индукционного двигателя https://www.youtube.com/watch?v=DsVbaKZZOFQ
https://www.youtube.com/watch?v=NaV7V07tEMQ
https : //www.teslamotors.com/models
http://evobsession.com/electric-car-range-comparison/
http://www.edmunds.com/mitsubishi/i-miev/2016/review/
http : //www.ford.com/cars/focus/trim/electric/
https://en.wikipedia.org/wiki/BMW_i3
http://www.edmunds.com/ford/fusion-energi/2016/ обзор /
http: // www.chevrolet.com/spark-ev-electric-vehicle.html
http://www.topspeed.com/cars/volkswagen/2016-volkswagen-e-golf-limited-edition-ar168067.html
http: // www. topspeed.com/cars/bmw/2016-bmw-i3-m-ar160295.html
http://www.popularmechanics.com/cars/hybrid-electric/reviews/a9756/2015-mercedes-benz-b-class- electric-drive-test-ride-16198208/
http://www.topspeed.com/cars/nissan/2016-nissan-leaf-ar171170.html
http://www.caranddriver.com/fiat/500e
http : //www.topspeed.com/cars/kia/2015-kia-soul-electricdriven-ar170088.html
http://www.topspeed.com/cars/ford/2016-ford-focus-electric-ar171335.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s- 70d-ar168705.html
http://www.topspeed.com/cars/tesla/2015-tesla-model-s-p85d-ar165627.html
http://www.topspeed.com/cars/tesla/2015- tesla-model-s-ar165742.html # main
http://www.caranddriver.com/reviews/2015-tesla-model-s-p90d-test-review
http://www.caranddriver.com/tesla/ model-s
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-1/what-is-alternating-current-ac/
http: // science.howstuffworks.com/electricity8.htm
http://www.allaboutcircuits.com/textbook/alternating-current/chpt-13/tesla-polyphase-induction-motors/
Изображение с: http://faq.zoltenergy.co/ технический /
http://www.kerryr.net/pioneers/tesla.htm
https://en.wikipedia.org/wiki/Westinghouse_Electric_(1886)
http://www.allaboutcircuits.com/textbook/alternating- current / chpt-13 / Introduction-ac-motors /
https://www.youtube.com/watch?v=Q2mShGuG4RY
http://www.explainthatstuff.com/electricmotors.html
http://electronics.howstuffworks.com/motor.htm
https://en.wikipedia.org/wiki/Induction_motor


.

Электродвигатель - Технический центр Эдисона

электродвигатель был впервые разработан в 1830-х годах, через 30 лет после первая батарея. Интересно, что мотор был разработан до появления первых динамо-машина или генератор.

Выше: Первый мотор Davenport

1.) История и изобретатели:

1834 - Томас Дэвенпорт из Вермонта разработал первый настоящий электродвигатель («настоящее» значение достаточно мощный, чтобы выполнить задачу) хотя Джозеф Генри и Майкл Фарадей создал ранние устройства движения с использованием электромагнитных полей. Ранние «моторы» создавали вращающиеся диски или рычаги, которые качался взад и вперед. Эти устройства не могли сделать никакой работы для человечества но были важны для того, чтобы проложить путь к лучшим двигателям в будущем.Различные двигатели Давенпорта были может управлять модельной тележкой по круговой колее и выполнять другие задачи. Позже тележка оказалась первым важным приложением электроэнергии (это была не лампочка). зачаточный полноразмерные электрические тележки были наконец построены через 30 лет после смерти Давенпорта в 1850-х годах.

Влияние электромотора на мир перед лампочками:
Тележки и подключенные энергосистемы были очень дороги для строили, но перевозили миллионы людей на работу в 1880-х годах.До того как рост электросети в 1890-х гг. большинство людей (средний и низкие классы) даже в городах не было электричества в домой.

Только в 1873 году электродвигатель, наконец, добился коммерческого успеха. С 1830-х годов тысячи инженеров-первопроходцев улучшили двигатели и создали много вариаций. См. Другие страницы для получения более подробной информации об огромной истории электродвигателя.

Выводы двигателя к генератору:
После слабые электродвигатели были разработаны Фарадеем и Генри, другой пионер по имени Ипполит Pixii выяснил это, запустив двигатель назад он мог создавать импульсы электричества. К 1860-м годам разрабатывались мощные генераторы. Электротехническая промышленность не могла начаться, пока генераторы были разработаны, потому что батареи не были экономичным способом получения энергии потребности общества.Подробнее о генераторах и динамо здесь>

2.) Как работают моторы

Электродвигатели могут работать от переменного (AC) или постоянного (DC) тока. Двигатели постоянного тока были разработаны первыми и имеют определенные преимущества и недостатки. Каждый тип мотора работает по-разному, но все они используют силу электромагнитного поля. Мы поговорим об основных принципах электромагнитных полей. в двигателях, прежде чем вы сможете перейти к различным типам двигателей.

переменного тока в электродвигателях используются вторичная и первичная обмотки (магнит), первичная подключен к сети переменного тока (или непосредственно к генератору) и находится под напряжением. Вторичный получает энергию от первичной обмотки, не касаясь ее напрямую. Это делается с помощью сложные явления, известные как индукция.

Справа: инженер работает над кастомными модификациями дрона-октокоптера.Восемь крошечных DC двигатели создают достаточно мощности, чтобы поднимать фунты полезной нагрузки. Более новые конструкции двигателей, подобные этому, используют редкоземельные металлы в статоре для создания более сильных магнитных полей в небольших и легких пакеты.

Выше: универсальный двигатель, обычно используемый в большинстве электроинструментов.Имеет тяжелый плотный ротор. Выше: асинхронный двигатель может иметь «беличью клетку» или полый вращающийся катушка или тяжелый якорь.

2.a) Детали электродвигателя:

Есть много видов электродвигателей, но в целом они имеют похожие части. Каждый мотор имеет статор , который может быть постоянным магнитом (как показано в «универсальном двигателе» выше) или намотанными изолированными проводами (электромагнит, как на фото вверху справа).Ротор находится посередине (большую часть времени) и подлежит к магнитному полю создается статором. Ротор вращается, поскольку его полюса притягиваются и отталкиваются полюсами статора. Смотрите наши видео ниже показывает, как это работает. В этом видео рассматривается бесщеточный двигатель постоянного тока, ротор которого находится снаружи, в других двигателях. тот же принцип обратный, с электромагнитами снаружи. Видео (1 минута):

Мощность мотора:
Сила двигателя (крутящий момент) определяется напряжением и длина провода электромагнита в статоре, чем длиннее провод (что означает больше витков в статоре), тем сильнее магнитное поле.Это означает больше мощности для повернуть ротор. Смотрите наше видео, которое относится как к генераторам, так и к двигателям. Узнать больше.

Арматура - вращающаяся часть двигателя - это раньше называлось ротором, это поддерживает вращающиеся медные катушки. На фото ниже вы не видите катушки, потому что они плотно заправлены в якорь. Гладкий корпус защищает катушки от повреждений.

Статор - Корпус и катушки, составляющие внешнюю часть двигателя. статор создает стационарное магнитное поле.

Вверху: В этом статоре отчетливо видны четыре отдельные катушки (якорь был удалено)

Обмотка или «Катушка» - медные провода, намотанные на сердечник для создания или получить электромагнитную энергию.

Провода, используемые в обмотки ДОЛЖНЫ быть изолированы. На некоторых фото вы увидите, что выглядит как обмотки из голого медного провода, это не так, это просто эмалированная с прозрачным покрытием.

Медь это самый распространенный материал для обмоток. Алюминий также используется но должен быть толще, чтобы нести такую ​​же электрическую безопасно загружать.Медные обмотки позволяют использовать двигатель меньшего размера. Подробнее о меди>

Перегорание мотора, поиск неисправностей:
Если двигатель работает слишком долго или с чрезмерной нагрузки, он может «сгореть». Это означает, что высокая температура вызвала изоляция обмотки может сломаться или расплавиться, затем обмотки закорочены когда они касаются друг друга, и двигатель поврежден. Вы также можете сжечь двигатель, подав на него большее напряжение, чем обмоточные провода рассчитаны на.В этом случае проволока расплавится в самом слабом месте, разорвав соединение. Ты можешь проверьте двигатель, чтобы увидеть, не перегорел ли он таким образом, проверив сопротивление (сопротивление) на мультиметре. Как правило, при проверке двигателя вы должны искать черные метки на обмотках.


Squirrel Cage - вторая катушка в асинхронном двигателе, см. Ниже чтобы увидеть, как это работает
Индукция - создание электродвижущей силы в замкнутом цепь изменяющимся магнитным потоком через цепь.В сети переменного тока уровень мощности повышается и понижается, это заряжает обмотку на момент создания магнитного поля. Когда мощность падает в цикле магнитное поле не может поддерживаться, и оно схлопывается. Это действие передает мощность через магнетизм на другую обмотку или катушку. УЧИТЬСЯ БОЛЬШЕ об индукции здесь.

3.) Типы электродвигателей переменного тока

Двигатели переменного тока:

3.а) Индукция Двигатель
3.b) Универсальный двигатель (можно использовать постоянный или переменный ток)
3.c) Синхронные двигатели
3.d) Двигатели с экранированными полюсами


См. Нашу страницу, посвященную асинхронным двигателям, здесь>

Это мощный двигатель, который можно использовать с мощность переменного и постоянного тока.

Преимущества :
-Высокий пусковой крутящий момент и небольшой размер (хорошо для обычного использования в бытовые электроинструменты)
-Может работать на высоких скоростях (отлично подходит для стиральных машин и электродрелей)

Недостатки:
- Щетки со временем изнашиваются

Использует: приборы, ручной электроинструмент

Посмотреть видео ниже:


3.в) синхронный Моторы (Selsyn Motor)

Этот мотор аналогичен асинхронному двигателю, за исключением того, что он движется с частотой сети.

Мотор Selsyn был разработан в 1925 году и сейчас известен как Synchro. Узнать больше о их здесь.


Преимущества: Обеспечивает постоянную скорость, которая определяется количество полюсов и частота подаваемого переменного тока.
Недостатки: Не может работать с переменным крутящим моментом, этот двигатель будет остановиться или «вытащить» с заданным крутящим моментом.
Использует: a часы использует синхронные двигатели для обеспечения точной скорости вращения для Руки. Это аналог двигателя , и хотя скорость точна, шаговый двигатель лучше подходит для работы с компьютерами, так как он функционирует на жестких «ступенях» разворота.

Этот мотор одинарный фазный двигатель переменного тока.Имеет только одну катушку с поворотным валом в центре, отставание потока, проходящего вокруг катушки, вызывает интенсивность движения магнита по катушке. Это получает центральный вал с вращением вторичной обмотки.

.

Смотрите также